- (ii) <u>electron(</u> in ground state) has moved / in to higher (energy) level / shell / orbital / state OR up level / shell / orbital / state ✓
 Ignore reference to photons
- (iii) (free) electrons collide with orbital electrons / mercury electrons / electrons in atom ✓ transferring energy ✓
 Ignore any reference to photons
- (iv) (mercury) atoms have discrete / fixed / specific energy levels ✓
 when electrons change levels they lose an exact / fixed / specific / discrete / set amount of energy OR photons emitted with exact / fixed / specific / discrete / set amount of energy ✓
 (leading to photons of) fixed / particular / certain / discrete / specific / unique frequencies ✓

Each mark independent Don't accept characteristic for 3rd mark

2

1

1

2

(b) (i) (use of $\lambda = c / f$) $f = 3 \times 10^{\circ} / (254 \times 10^{-\circ}) \checkmark$ $f = 1.18 \times 10^{15} (Hz) \checkmark$ *AE penalty if give answer to 1 sig fig.*

> (ii) (use of E = hf) $E = 6.63 \times 10^{-34} \times 1.18 \times 10^{15} = 7.82 \times 10^{-19} J \checkmark$ $E = 7.82 \times 10^{-19} / 1.6 \times 10^{-19} \checkmark = 4.9 (4.875) eV$ *CE part (i) Range 4.8 - 5.0 acceptable*

2

 (c) coating <u>absorbs</u> photons / uv light ✓ and re-emits (photons) of low(er) energy / long(er) wavelength / low(er) frequency ✓

Ignore any description of mechanism

[13]

2

M2. (a) (i) when electrons/atoms are in their lowest/minimum energy (state) or most stable (state) they (are in their ground state) √

- (ii) in either case an electron receives (exactly the right amount of) energy \checkmark excitation promotes an (orbital) electron to **a higher energy/up a** level \checkmark ionisation occurs (when an electron receives enough energy) **to leave** the atom \checkmark
- (b) electrons occupy discrete energy levels ✓
 and need to absorb an exact amount of/enough energy to move to a higher level ✓
 photons need to have certain frequency to provide this energy or e = hf ✓
 energy required is the same for a particular atom or have different energy levels ✓
 all energy of photon absorbed ✓
 in 1 to 1 interaction or clear a/the photon and an/the electrons ✓
- (c) energy = $13.6 \times 1.60 \times 10^{-19} = 2.176 \times 10^{-18}$ (J) \checkmark $hf = 2.176 \times 10^{-18} \checkmark$ $f = 2.176 \times 10^{-18} \div 6.63 \times 10^{-34} = 3.28 \times 10^{15}$ Hz \checkmark 3 sfs \checkmark

[12]

4

M3.		(a)	(i) an electron/atom is at a higher level than the ground state (1)	
			or electron jumped/moved up to another/higher level	1
		(ii)	electrons (or electric current) flow through the tube (1)	
			and collide with orbiting/atomic electrons or mercury atoms (1)	
			raising the electrons to a higher level (in the mercury atoms) (1)	3
		(iii)	photons emitted from mercury atoms are in the ultra violet (spectrum) or high energy photons (1)	
			these photons are absorbed by the powder or powder changes frequency/wavelength (1)	
			and the powder emits photons in the visible spectrum (1)	
			incident photons have a variety of different wavelengths (1)	x 3
	(b)	(i)	(use of <i>E</i> = <i>hf</i>)	

(::)	= 2	3
	<i>f</i> = 0.33 × 10 ⁻¹⁸ /(6.63 × 10 ⁻³⁴) = 5.0 × 10 ¹⁴ (Hz) (1)	
	$-0.26 \times 10^{-18} - 0.59 \times 10^{-18} (1) = 6.63 \times 10^{-34} \times f(1)$	

M4. (a) lowest energy state/level that the electron can occupy

or state in which electron needs most energy to be released

2

1

[12]

(b)	(i)	force = mv^2/r or $mr\omega^2$ and $v = r\omega$	
			B1
		$8.1 \times 10^{-8} = 9.1 \times 10^{-31} \times v^2/5.3 \times 10^{-11}$ or ($v^2 =$) 4.72 × 10 ¹² seen	
			B1
		2.17 × 106 (m s⁻¹)	
			B1

(ii)
$$\lambda = h/mv$$
 or 6.6 × 10⁻³⁴/9.1 × 10⁻³¹ × 2.2 × 10⁶

		C1	
3.3 × 10⁻⁰ m			

(iii) circumference =
$$2\pi 5.3 \times 10^{-11} = 3.3 \times 10^{-10}$$
 m

M1 1 (allow e.c.f. from (ii))

B1

A1

7

(ii)
$$5.6 \times 10^{-19} \text{ J} (\text{e.c.f. } 2.5 \times 10^{-18} - \text{their (i)})$$

PhysicsAndMathsTutor.com

(iii)	energy difference <i>E</i> = 3 × 10 ⁻¹⁹ J (condone any difference)			
		C1		
	$E = hc/\lambda$ or $E = hf$ and $c=f\lambda$			
	or their E = 6.6 × 10 ⁻³⁴ × 3.0 × 108/λ			
		C1		
	6.6 or 6.7 × 10⁻ [,] m			
		A1	5	
			3	[13]

B1

M5.A

[1]